Journal article
2012
Museum Curator Adjoint in Entomology
robertkcolwell [at] gmail.com
Boulder, CO 80309, USA
robertkcolwell [at] gmail.com
Boulder, CO 80309, USA
APA
Click to copy
Colwell, R. K., Chao, A., Gotelli, N., Lin, S.-Y., Mao, C., Chazdon, R., & Longino, J. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages.
Chicago/Turabian
Click to copy
Colwell, R. K., A. Chao, N. Gotelli, Shang-Yi Lin, C. Mao, R. Chazdon, and J. Longino. “Models and Estimators Linking Individual-Based and Sample-Based Rarefaction, Extrapolation and Comparison of Assemblages” (2012).
MLA
Click to copy
Colwell, R. K., et al. Models and Estimators Linking Individual-Based and Sample-Based Rarefaction, Extrapolation and Comparison of Assemblages. 2012.
BibTeX Click to copy
@article{r2012a,
title = {Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages},
year = {2012},
author = {Colwell, R. K. and Chao, A. and Gotelli, N. and Lin, Shang-Yi and Mao, C. and Chazdon, R. and Longino, J.}
}
Aims In ecology and conservation biology, the number of species counted in a biodiversity study is a key metric but is usually a biased underestimate of total species richness because many rare species are not detected. Moreover, comparing species richness among sites or samples is a statistical challenge because the observed number of species is sensitive to the number of individuals counted or the area sampled. For individual-based data, we treat a single, empirical sample of species abundances from an investigator-defined species assemblage or community as a reference point for two estimation objectives under two sampling models: estimating the expected number of species (and its unconditional variance) in a random sample of (i) a smaller number of individuals (multinomial model) or a smaller area sampled (Poisson model) and (ii) a larger number of individuals or a larger area sampled. For sample-based incidence (presence–absence) data, under a Bernoulli product model, we treat a single set of species incidence frequencies as the reference point to estimate richness for smaller and larger numbers of sampling units. Methods The first objective is a problem in interpolation that we address with classical rarefaction (multinomial model) and Coleman rarefaction (Poisson model) for individual-based data and with sample-based rarefaction (Bernoulli product model) for incidence frequencies. The second is a problem in extrapolation that we address with sampling-theoretic predictors for the number of species in a larger sample (multinomial model), a larger area (Poisson model) or a larger number of sampling units (Bernoulli product model), based on an estimate of asymptotic species richness. Although published methods exist for many of these objectives, we bring them together here with some new estimators under a unified statistical and notational framework. This novel integration of mathematically distinct approaches allowed us to link interpolated (rarefaction) curves and extrapolated curves to plot a unified species accumulation curve for empirical examples. We provide new, unconditional variance estimators for classical, individual-based rarefaction and for Coleman rarefaction, long missing from the toolkit of biodiversity measurement. We illustrate these methods with datasets for tropical beetles, tropical trees and tropical ants.